CLIMATE CHANGE VULNERABILITY ASSESSMENT OF LABUTTA TOWNSHIP, AYEYAWADY REGION, 2016-2050: SCENARIOS FOR RESILIENCE BUILDING

SUMMARY FOR POLICY MAKERS
Climate Change Vulnerability Assessment of Labutta Township, Ayeyawady Region, Myanmar, 2016-2050: Scenarios for Resilience Building

SUMMARY FOR POLICY MAKERS

‘Climate Change Vulnerability Assessment of Labutta Township, Ayeyawady Region, Myanmar, 2016-2050: Scenarios for Resilience Building’

Copyright © United Nations Human Settlements Programme (UN-Habitat)
First edition 2017 - updates and information at www.myanmarccalliance.org

United Nations Human Settlements Programme
P.O. Box 30839, Nairobi 00100, Kenya
infohabitats@unhabitat.org
www.unhabitat.org

Cover Photo: Crossing by boat to Do Yi Kane village from Labutta
© MCCA/UN-Habitat, 2016

All pictures, unless otherwise stated, are to be credited to:
© MCCA/UN-Habitat, 2016

DISCLAIMER
The designations employed and the presentation of material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or regarding its economic system or degree of development. The analysis, conclusions and recommendations of this publication do not necessarily reflect the views of the United Nations Human Settlements Programme, UN Environment or their governing bodies.

This publication has been produced with the assistance of the European Union. The contents of this publication are the sole responsibility of MCCA and can in no way be taken to reflect the views of the European Union.

ACKNOWLEDGEMENTS
Programme & methodology coordinator: Pasquale Capizzi
Lead Authors: Liam Fee, Montse Gibert, Ryan Bartlett, Pasquale Capizzi, Bradley Horton, Corey Leik
Contributing Authors: Micaharul Alam, Annette Wallgren
Local Survey Teams: Hung Ling, Tin Ko Oo, Win Naing, Stephen Wah
Reviewers: Wyn Ellis, Nina Raasakka, Annette Wallgren
Design and Layout: BRIDGE Creative

CITATION

UN-Habitat and UN Environment initiated and coordinated the report, under the Ministry of Natural Resources and Environmental Conservation (MNREC) of the Union of the Republic of Myanmar.

The study was funded by the European Union under the Myanmar Climate Change Alliance Programme (MCCA). All activities under the MCCA were possible thanks to the generous support of the European Union with the Global Climate Change Alliance.

The World Wide Fund (WWF) contributed through the ADVANCE Partnership with the Columbia University Center for Climate Systems Research (CCSR) in the down-scaled projections as well as the analysis of the ecosystem.

The Environmental Conservation Department (ECD) of (MNREC) facilitated the cooperation and access to data and information at national and local level. The General Administrative Department (GAD) of the Ministry Home Affairs facilitated surveys and community consultations at Township level. All Census data has been provided by the Department of Population (Ministry of Labour, Immigration and Population). The Department of Meteorology and Hydrology (DMH) of the Ministry of Transport and Communication (MTC) has provided all data necessary for the down-scaled climate change projections.

MCCA is funded by the European Union
CONTENTS

04 Highlights
09 Purpose, Principles and Methods of the Assessment
12 Township Profile
 Climatic Features, Natural Hazards and Observed Impacts
 Ecosystem Conditions
 Infrastructure Conditions
 Socio-economic Conditions
 Spatial Structure of Labutta
 Current Vulnerability Index
26 Climate Change Projections and Future Risks and Vulnerabilities
 Climate Change Projections
 Future Impacts
 Future Risks Profile and Vulnerabilities
36 Scenarios for Labutta 2050
54 Findings & Recommendations: Planning for Adaptation in Labutta
59 Local Adaptation and Resilience Planning: Pursuing the Best Scenario
In 2016 the Myanmar Climate Change Alliance (MCCA), implemented by UN-Habitat and UN-Environment, on behalf of the Ministry of Natural Resources and Environmental Conservation, conducted a detailed climate change vulnerability assessment of Labutta Township, in collaboration with WWF and Columbia University.

Labutta is located at the southern tip of the Ayeyawady Delta Area region in Myanmar and is home to approximately 315,000 people. Characterized by a deltaic environment, it has a predominantly flat topography and suffered greatly in terms of damage and lives lost from Cyclone Nargis in 2008. Labutta is still struggling to recover from its effects, especially in rice production.

The study analyses current vulnerabilities, and by projecting changes in climate, anticipates further vulnerabilities in the future up to 2050. Three scenarios for the future of Labutta are envisaged, taking into account the potential impact of climate change and the required adaptation and mitigation action. Recommendations are issued to avoid the worst case future scenario A, which is currently the most likely.

The study projects changes in climate for the township and concludes that temperatures may increase by as much as 2.3°C in 2050, with up to 17 more hot days per year. Rainfall patterns are also projected to change, with a possible increase in rainfall during a shorter rainy season, meaning more frequent heavy rainfall events, over shorter periods of time. Strong winds and cyclones are also expected to increase, because of higher air and ocean temperatures, more evaporation and a greater moisture level in the atmosphere. Salinity already is and will continue to be a critical challenge. Labutta has two salt lines: a permanent salt line, below which the land and groundwater is saline, and a seasonal salt line, below which the land and groundwater is saline, and a seasonal salt line, in which land and groundwater is saline in the dry season. These salt lines are moving north and east, affecting a greater number of people as the sea-level rises. The assessment projects up to 11 centimetres of sea-level rise by 2050, which will increase the area at salt infiltration, and cause more frequent and more-intense inundations and floods.

The assessment concludes that decision-makers in Labutta Township will need to plan for increased coastal flooding, warmer temperatures, more frequent extreme heat days, more intense cyclones, greater amounts of rain within a shorter monsoon season, and unknown rainfall changes during other seasons.

The study demonstrates that, in the current conditions, Labutta Township is insufficiently resilient to the present climate conditions, and its vulnerability will increase greatly because of the projected future changes in climate if no adaptation actions are taken. This is due to the current socio-economic, infrastructure and ecological system conditions, and the expected impact of climate change on these systems.

The interplay of these underlying vulnerabilities with on-going and future changes in the climate will, if not urgently addressed, leave the people of Labutta more vulnerable to disasters. The effects will be seen through more frequent loss of lives and assets, lower incomes that will drive poverty, increased migration, poorer outcomes for women and a challenging public health situation. Housing and basic service conditions will also worsen, driven by changes in the climate and degraded ecosystems.
Three possible future scenarios by 2050 are envisaged:

A. The business as usual scenario, in which authorities and communities do not recognize the urgent need to address different aspects of vulnerability. Changes in climate have exponential effects on the three systems analyzed in this report: socio-economic, infrastructure, ecological and ultimately affect people’s life, livelihoods, health, and safety before and by 2050. In this scenario, insufficient planning capacities and governance affect the required mid to long-term planning. Decisions are taken to respond to short-term needs, such as allowing cutting mangroves without replanting; constructing infrastructure where inundation may occur; or failing to construct houses with storm-resistant techniques, but with long-term negative consequences. Under this scenario, livelihoods, infrastructure and environmental conditions will not allow people to improve living conditions in the township. In addition, projected changes in the climate will interact with and exacerbate the existing vulnerabilities and as they do, new, unforeseen vulnerabilities may also emerge.

B. The resilience is built to maintain current living standards scenario, in which the township and communities recognize the urgent need to take action, but also recognize investment, time, economic, technical and skill constraints. In this scenario, an adaptation plan is adopted, and activities that can be implemented without large investment are coherently undertaken, such as the protection of the environment; the strengthening of economic associations to create a more resilient livelihood and income; the integration of measures for strong winds in housing and schools; the improvement of water-harvesting, among others. Under this scenario, decisions on land-use and town-planning would need to take into account current and projected climate risks, to prevent hazardous situations, such as infrastructure being constructed near flood-prone areas and the need to clean drainage infrastructure inter alia. In this scenario, the township and communities are able to plan their adaptation needs considering climate constraints, and communicate them to the districts, states and regions, NGOs and development partners. This scenario is the minimum required to prevent increased vulnerability, and to continue present development trends.

C. Resilience is built that enables economic and social development despite changes in climate by 2050, considering the different vulnerabilities of both men and women, in which effective, strategic planning; resources, coordination, and time is assigned not only to maintain basic safety conditions, but to achieve development goals. Based on this assessment, the first of its kind in Labutta, planning work that follows is strategic, and guides the township planning, the budget request to the district and other authorities. It requests investment from national authorities and international partners; to achieve three main results: 1) A healthy ecosystem is maintained and enhanced, to protect and provide for people; 2) A diversified, inclusive and resilient economy, to enhance the economic conditions of the township; 3) A resilient infrastructure and connectivity, that protects people and enables. In this scenario, efforts are sustained in an inclusive manner over a long period of time, and by a number of actors, but particularly the local and national government.

PURPOSE, PRINCIPLES AND METHODS OF THE ASSESSMENT

The purpose of this assessment is to inform the Labutta Township, district, regional and national authorities, as well as the development partners, of the expected consequences of climate change and, on this basis, to help them to plan and act to adapt to climate change.

FIVE PRINCIPLES WERE APPLIED TO CONDUCT THE ASSESSMENT:

- Simplicity, to ensure ease of replication in other townships
- Measurability and availability of data, to ensure ease of update and replication
- Inclusiveness, to ensure participation of communities
- Comprehensiveness, to ensure relevance of the findings
- Spatial relevance, to guide actual adaptation interventions
TO RESPECT THESE PRINCIPLES, THE ASSESSMENT USES THE FOLLOWING:

- Open-source or widely available software, such as Q-GIS.
- Data available at either national or local level, which can be easily obtained upon written request. The assessment does not use high resolution satellite imagery, but rather relies on open-source data.
- Data from the Census 2014, disaggregated at village-tract and urban ward level, as a key source of information. In addition to being a vast source of information and insight, future censuses will provide actual monitoring of changes in the structure of the townships, which can be reassessed in the future.
- Participatory approach, involving communities throughout the whole township through simple questionnaires, community focus groups and participatory mapping.
- Identification of the current and future spatial structure of the township, which is essential to support planning and interventions for adaptation spatially.
- Equal participation of men and women and, where possible, using gender disaggregated data.
- Representative engagement of young and old people, and consideration poverty drivers such as a lack of access to educational opportunities.
- Engagement of the national government and the township throughout the process, to ensure ownership of the results and replication.

THE METHODOLOGY WORKS AS FOLLOWS:

A. It first describes the context and key socio-economic, ecological and infrastructure features and the spatial structure of the township, as basis for the analysis. This generates insights on the current situation and sources of vulnerability. A vulnerability index is presented, which gives an account of the most vulnerable localities in the township;

B. It analyses, through both data analysis and community risk mapping, the exposure of people and assets to recurrent natural hazards and the potential for rapid and slow-onset disaster;

C. It then overlays downscaled projections of climate change up to 2050 on the current conditions analysed in the assessment and studies how these new climatic conditions will affect people and assets in the township;

D. It produces future scenarios that may materialize if adaptive action is not taken and contrast them with potential adaptive pathways, which inform adaptation planning;

E. On this basis, it informs a long-term local adaptation and resilience building plan, with detailed adaptive measures for the infrastructure, environmental and socio-economic systems.
Labutta Township is in the heart of Ayeyawady delta. The township is characterized by a flat, low-lying topography typical of a river basin outlet, except for some low hills in the north of the township. The mangrove forests and the surrounding ecosystem are in an increasingly fragile state due to direct impacts of economic development and land use change, including decades of deforestation.

Labutta’s demographic and socio-economic characteristics make the township vulnerable to shocks, even more so because of climate change. In particular, migration trends, low economic outputs, non diversified livelihoods sources and lack of vocational training education, make Labutta insufficiently resilient and dependent on climate-sensitive sources of income. In addition, social trends show an unequal access to economic opportunities for women.

Labutta town hosts both the Labutta Township administration and the Labutta District, which is one of the six districts that form the Ayeyawady Region. The Ayeyawady Region regional government is located in Pathein. The ability of the Township administration to integrate climate change into planning, and invest resources to mitigate its impact, will determine the future scenarios and the development of the township and its inhabitants.
Myanmar can be divided into five physiographic regions: the northern mountains; the western ranges; the eastern plateau; the central basin and lowlands, and finally the coastal plains. The terrain is made up of central lowlands ringed by steep, rugged highlands.

CLIMATIC FEATURES, NATURAL HAZARDS AND OBSERVED IMPACTS

In the last decades, meteorological and observational data confirm that

- Stronger storms, winds and unusually heavy rainfall affect people’s mobility and access to basic services, destroy houses and lives, and destroy agriculture crops. The cyclone Nargis was extremely destructive and killed thousands of people. Its intensity was unprecedented in this region.
- Exposure to storm surges and erosion is higher in deforested areas along the coast and water canals.
- A shorter monsoon season and higher temperatures give less time to collect rainwater and reduce evaporation resulting in water shortages for agriculture and drinking water.
- Sea water infiltration increases salinization impacting nutrient cycling in soil and lowers rice yields.

ECOSYSTEM CONDITIONS

- Labutta Township is characterised by a deltaic environment, with a flat topography, except for some low hills in the northern part of the township. Due to its location, the Ayeyawady Delta collects sediments and nutrients that support a highly productive surrounding ecosystem. These in turn provide critical ecosystem services – benefits that nature provides to people – that support livelihoods and the larger economy of the entire township.
- The Delta is a naturally highly productive and resilient ecosystem, but decades of deforestation and degradation have severely diminished. Mangrove forests are especially critical to maintaining ecosystem services, but without major intervention, will be entirely lost in the coming decade.
- Due to its geography and the naturally variable seasonal hydrology, the township is also highly exposed to climate hazards like coastal and upstream floods and droughts.
- Low lying geography at the coastal outlet of the Ayeyawady River makes the township similarly vulnerable to saline intrusion, especially in combination with decreasing dry season flows and upstream uses. The township can be divided in three main areas, depending on the level of salinity intrusion: (i) the coastal areas (coastal front) permanently under influence of salt water intrusion; (ii) the central areas (estuarine zone), under seasonal influence of salt water intrusion; and northern areas (lowland zone), beyond the reach of salt water intrusion.
INFRASTRUCTURE CONDITIONS

- Labutta is considerably less urbanised than the rest of Myanmar. Thirty per cent of Myanmar’s population lives in urban areas whereas only 10.6 per cent of people living in Labutta Township live in the urban centres, almost all of whom in Labutta Town.

- 97 per cent of the conventional housing units are made in non-durable materials in Labutta. Housing construction is vulnerable to strong winds and floods, because it is often poorly executed, or not adapted to increased frequency and intensity of the hazards and highly dependent on already degraded eco-systems provisioning service.

- 80 per cent of the population relies only on uncovered water sources (ponds, rivers and stream) for drinking water. There is a lack of infrastructure for water storage at community level (such as water tanks and reservoirs) and in schools, health posts and other public buildings.

- Freshwater availability will worsen due to the lack of infrastructure for water storage and management at community level. Salinisation of freshwater challenges the current irrigation system.

- Disaster and climate resilient basic services coverage is very limited. Around 10 per cent of the total population of the township has access to cyclone shelters providing critical emergency shelter.

- The current transportation system is highly vulnerable to hazards, reducing people’s mobility and ability to communicate.

- The lack of climate-sensitive land-use planning increases communities’ vulnerability to future hazards.
Main drinking water sources

- Rain water harvest ponds are the only source of drinking water for more than 80% of the households, while some communities from the north-east and south-west areas have access to wells.

Rural health coverage

- The majority of sub-rural health centres (SRHC) are located within a distance of 10 km (2 h walking) from a rural health centre (RHC), providing health services to a population between 2,500 and 5,000 inhabitants.

Cyclone shelter coverage

- The spatial distribution shows a network of shelters every 5 km (1 h walking) in coastal and northern areas, while in the central-east area there is a lack of shelters and distances are greater.

Socio-economic conditions

- Labutta’s population pyramid shows an uneven distribution, with fewer than expected people in the 15-24 age group. This is indicative of relatively high outward migration and the disproportionate effect of cyclone Nargis on young people and children. Despite this, around 38% of the population of Labutta is under 18.

- Infant mortality is much higher in Labutta than in the rest of Myanmar; 60 infants are lost per 1,000 live births compared to 60 per 1,000 on average in Myanmar.

- Agriculture and fisheries make up 50 per cent of value but provide the main source of livelihood for almost 72 per cent of the population, when economically inactive people are factored in. There is limited corporate or collective association. This heightens the risk of shocks and means there is no safety net in case of loss of income or assets.

- Market failures, especially in fisheries, keep prices and incomes low. There are many sellers but very few buyers. In agriculture, storage problems are an obstacle for farmers.

Figure 6. Demographic pyramid of Labutta (Census, 2014)
• Production is not diverse, because of high dependence on agriculture and fisheries. This means there is little capacity to create value-chains in-township that will help to create wealth, raise incomes and reduce poverty.

• Low educational outcomes and very little vocational training is a problem because there are very few skilled people capable of working in higher value-added sectors. 71.8 per cent of the population has received either no education or only education up to the grade 5 level. This rises to almost 76 per cent for women.

• Household incomes are very low, which limits the ability to respond to and recover from disasters and invest to offset losses caused by slow-onset changes.

• Female headed households are more vulnerable; more fragile socio-economic status result in more limited alternatives to livelihoods.
Spatial Structure of Labutta

- Myaungmya provides many socio-economic functions to the northern area of the township, while Pathein provides the highest level of education and health facilities and represents the main market for the agricultural products and provisioning needs of the township.

- Labutta Township has low levels of socio-economic and infrastructure development. 60 per cent of the population live in village tracts where only basic health and education services and some basic services are provided. Eastern and north-western areas are the least developed.

- Labutta Town, Pyinsalu Town and Kan Bet and Kyar Kan are the three main clusters of the township covering the highest levels of socio-economic functions and connectivity and recognised as suitable for investment in economic, social and basic services.

- Four primary corridors along the main routes of multimodal transport networks (roads and water canals) enable connectivity and remain crucial to support the economy of the southern areas of the township.

- These corridors are extremely vulnerable to weather conditions and natural hazards, with potential for disrupting both commerce, and access to critical services such as health from more remote areas.

- The spatial distribution of services and functions is not balanced across the township and is fragile by virtue of the poor connections and climatic present and projected conditions.
CURRENT VULNERABILITY INDEX

Indicators for infrastructure, ecological and socio-economic systems have been analysed against the observed climatic dominant features and natural hazard profile.

These indicators are: For infrastructure and transportation, the 1) type of housing units, 2) access to transport service, 3) access to cyclone shelter; for eco-system services: 1) access to drinking water; 2) access to irrigation water (other than rain) and 3) quality of the forest coverage. For the socio-economic system: 1) level of education achieved, 2) income per capita, 3) labour force participation rate.

Depending on the village tract, indicators were scored and then contrasted with the potential natural hazards. As a result, an index of vulnerabilities was established to show where they are spatially concentrated, given a certain natural hazard.

- The entirety of Labutta township is extremely vulnerable to a number of natural hazards, which have increased in intensity and likelihood over the last decades. This includes floods and inundations; strong winds, storms or cyclones and heavy rains; sea-level rise and salinization with increased storm-surge risks and erosion. Its eco-system is extremely risk-sensitive and non-diversified and the infrastructure unable to withstand the hazards. Its eco-system is seriously degraded;

- Village tracts closer to the coast face greater levels of vulnerability than those inland. This is because they have clear challenges in accessing fresh water for drinking and irrigation water and less access to transport services. Meanwhile, their incomes, housing structures, labour force participation and access to cyclone shelters is not better (and in some cases also worse) than other areas in the township.

- Meanwhile, while drought, heatwaves and cyclones can affect the whole township, storm surge, salinity and flooding are all likely to impact the coastal areas of the township more than the inland areas.

- The vulnerability index suggests that coastal areas of the township are currently facing greater threats from disaster risks. However, the rest of the township is nonetheless extremely vulnerable to the transformative effects of climate change (such as salinization, higher temperatures affecting crops and evaporation of harvested water) and require also attention.
CLIMATE CHANGE PROJECTIONS FOR LABUTTA

- Sea level for the coastal area closest to Labutta is projected to increase by 20 to 40 centimetres by mid-century, while projections for the end of the century could exceed 1 metre.

- Temperature in Labutta is expected to rise over the coming decades; by mid-century, annual average temperatures are projected to rise by 1.1-2.0°C with possible peaks at 2.3°C.

- Warming in the hot season (March-May) and cool season (November-February) is projected to slightly exceed warming in the wet season (June-October); by mid-century, extreme heat days between March and May are projected to occur at a frequency of 4-17 days per month, relative to a historically-defined rate of 1 per month.

- Climate models suggest an increase in total rainfall for Labutta, with the increase projected to be experienced principally during the monsoon season.

- The direction of rainfall change in the hot and cool seasons is unclear. Climate models project a wide range of potential rainfall changes, spanning from an increase to a decrease.
CLIMATE CHANGE IMPACT PATHWAY

The projected changes in climate will increase the hazards intensity and possibly likelihood, and set in motion primary and secondary impacts before and by 2050.

Downscaled projections were discussed with communities and the chain of potential effects and impacts drawn participatorily.

There is a complex correlation between hazards and impacts: in particular, a given primary impact resulting from one or more climatic features can cause multiple secondary impacts that are intertwined and that feed mutually.

For example, crop failure and pests can result from all five of the hazards identified. By understanding this relationship, we can begin to see which people are more likely to be vulnerable; farmers are highly vulnerable because the crops on which they depend for their livelihood can be impacted by numerous hazards. Secondary impacts consider the broader, knock-on effects; i.e., crop failure would cause worsening nutritional outcomes, because many farmers keep a substantial amount of their crops for household consumption.
Figure 12. Pathways to potential climate change impact

2050 HAZARDS PRIMARY IMPACTS SECONDARY IMPACTS

+1.9°C Warmer
- Heat waves
- Difficult to access food
- Jobs lost
- Increased mortality
- Migration
- Power failures

+ 2°C Warmer
- Increase in mean temperature of 1.1 to 2.0°C
- Heat waves
- Difficult to access food
- Jobs lost
- Increased mortality
- Migration
- Power failures

+/- Rainfall
- Changes in precipitation patterns, with rainfall projected to change by -7% to +17% in the hot season; and -8% to +13% in the cold season
- Intense rains damage of crops
- Enhanced problems during La Niña due to excessive water levels
- Severe inundation of land
- Damage of coastal ecosystems and ecosystem services
- Damage to land and crops
- Damage to housing, assets and infrastructure
- Loss of lives and livelihoods
- Impact to people's mobility
- Displacement of people

+/- Sea Level
- Sea-level rise, with middle range sea level rise projections of 20-41cm in the 2050s
- Increased risks of rapid on-set disasters
- Tropical storms, storm-surges, and heat-waves

FUTURE RISK PROFILE AND VULNERABILITIES

This section of the assessment assumes that business will be conducted as usual, meaning that no adaptation actions will be taken. As such, the future vulnerabilities presented here are not a projection or a forecast of the situation in ecosystems, infrastructure, or socio-economics in 2050, but are a possible scenario if no actions are taken.

i. Increased risks of rapid on-set disasters

The changes in climate will result in increasingly intense hazardous events. The threat to people’s safety and loss of life from destructive events will increase, as current infrastructure, planning, and productive methods are not able to withstand increasingly severe hazards. This is because there will be greater risks of rapid on-set disasters from floods and inundation, intense rain, cyclones and tropical storms, storm-surges, and heat-waves.
Future vulnerabilities that are likely to emerge or worsen under projected future climate change under a ‘business-as-usual’ (BAU) scenario, which will have profound effects on the way communities benefit from eco-system services and that in turn will affect productive systems, particularly agricultural productivity, access to water, and mobility.

The capacity of the population to benefit from agriculture relies mainly on three eco-system services: freshwater, soil and crops, that will be highly impacted by projected climate change:

- A much greater proportion of Labutta’s agricultural land will be saline to support the current mix of crops. This increase in salinity will also further restrict the availability of water for irrigation, meaning that areas in the central and northern area that are not currently affected by salinity will be more so, reducing their freshwater access.

- The longer dry season will result in more evaporation, exacerbating the lack of freshwater while decreasing the quality of the soil, making agricultural land more arid in the dry season. Erosion will also be an issue, especially in the rainy season as flooding will be increasingly likely. Inundation will also damage soil and make production much more difficult, meaning that in some years there would be a total loss of crops.

- If we assume a 15 per cent reduction in output because of climate change and that a further 10 per cent of land will be inundated or sufficiently saline to prevent crops from growing and that there will be an extreme event once every ten years that eliminates yields, output per capita would reduce to US$260 (1,200 Kyat) per year at constant prices, resulting in incomes of below US$1 (1,200 Kyat) per day.

Increased Risks of Slow-onset Disasters, Transformative Climatic Processes and Negative Impacts on Key Sectors

HAZARD: Higher Average Temperatures
- **ECO-SYSTEM SERVICE:** Agriculture
- **MAIN PROJECTED IMPACTS:**
 - Increased evaporation causes increased aridity and increased soil moisture loss, decreasing productivity
 - Increased evaporation leads to lower flows from and less storage potential in waterways and reservoirs

HAZARD: More Heavy Rainfall
- **ECO-SYSTEM SERVICE:** Agriculture, Freshwater
- **MAIN PROJECTED IMPACTS:**
 - Increased soil loss due to increased erosion from increasingly frequent intense storms
 - Possible quality declines due to increased water intensity

HAZARD: Increased Sea Level
- **ECO-SYSTEM SERVICE:** Agriculture
- **MAIN PROJECTED IMPACTS:**
 - Saltwater intrusion is one of the most important constraints to rice production, particularly for rain-fed system in the saltwater and mixed zones. Soil productivity has declined since Nargis as a result of increased salinity
 - Loss of second crop in northern areas. Incomes of agriculture households will decline. Increased migration would be likely because of further reduced income
 - Constraints to rice production, particularly for rain-fed system in the saltwater and mixed zones

Climate Change Projections
Climate Change Projections

Data Source: [Insert Data Source]

Disclaimer: The designations employed and the presentation of material on this map do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.

2016 | Capacity of the population to benefit from agriculture

The number of people capable of benefiting from agriculture as the result of the net interaction of two eco-system services: positive and negative.

The population is approximated by calculating the proportion of crop yield in the agricultural area and the household level of consumption expected between April 2016 and March 2017, 2050, by applying a coefficient of reduction on 2016’s baseline population level.

Population (number)

- 0-2500
- 2500-5000
- 5000-7500
- 7500-10000
- >10000

2050 | Capacity of the population to benefit from agriculture

The number of people capable of benefiting from agriculture in 2050, by applying a coefficient of reduction on 2016’s baseline population level.

Population (number)

- 0-2500
- 2500-5000
- 5000-7500
- 7500-10000
- >10000

Crop types

Type of crops cultivated in each village block in 2014 and 2016 by calculating the proportion of rice, maize, groundnut, and bean crop yield.

Soil types

Soil classification concerns the grouping of soils with a similar range of properties (chemical, physical, and biological) into units that can be geo-referenced and mapped. The classification has generally been based on the properties that are important for agriculture.

Water sources

Rainfed agriculture is the main type of agriculture across the township. In some parts of the southern area, a system of irrigation canals and dykes allows two crops per year.
Fewer people are expected to have access to freshwater for drinking-water from surface sources, especially in coastal and central areas by 2050.

- Because around 80 per cent of the township depends on uncovered sources of water, salinization will reduce the quality and availability of drinking water. This is partly because ponds will become inundated with saline water and partly because the longer dry season will result in a greater amount of evaporation, while water storage is not capable to store greater amounts of rain in a shorter rainy season.

- Inundation is also likely because of more intense cyclones, which will cause storm surges. This will mean that less land is available, which will also compromise water storage facilities.

- In addition, the level of salinization of rivers and streams is moving north, meaning that in the future, freshwater sources (ground-water and surface water) in northern areas could experience saline intrusion.

The capacity of the population to have access to surface freshwater for drinking relies mainly on three eco-system services (surface freshwater, geology and vegetation cover) that will be highly impacted by the projected Climate Change:

<table>
<thead>
<tr>
<th>HAZARD</th>
<th>ECO-SYSTEM SERVICE</th>
<th>MAIN PROJECTED IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>+2°C Warmer</td>
<td>Surface freshwater</td>
<td>Surface freshwater levels may increase due to salinization of underground aquifers. The quality of drinking water decreases.</td>
</tr>
<tr>
<td></td>
<td>Geology</td>
<td>Geology may change, leading to decreased water storage capacity. Large quantities of rain fall during shorter rainy seasons.</td>
</tr>
<tr>
<td></td>
<td>Vegetation cover</td>
<td>Vegetation cover will decline as water availability for vegetation growth decreases.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HAZARD</th>
<th>ECO-SYSTEM SERVICE</th>
<th>MAIN PROJECTED IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>+/- Rainfall</td>
<td>Surface freshwater</td>
<td>Surface freshwater levels may increase due to salinization of underground aquifers. The quality of drinking water decreases.</td>
</tr>
<tr>
<td></td>
<td>Geology</td>
<td>Geology may change, leading to decreased water storage capacity. Large quantities of rain fall during shorter rainy seasons.</td>
</tr>
<tr>
<td></td>
<td>Vegetation cover</td>
<td>Vegetation cover will decline as water availability for vegetation growth decreases.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HAZARD</th>
<th>ECO-SYSTEM SERVICE</th>
<th>MAIN PROJECTED IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Sea Level</td>
<td>Surface freshwater</td>
<td>Surface freshwater levels may increase due to salinization of underground aquifers. The quality of drinking water decreases.</td>
</tr>
<tr>
<td></td>
<td>Geology</td>
<td>Geology may change, leading to decreased water storage capacity. Large quantities of rain fall during shorter rainy seasons.</td>
</tr>
<tr>
<td></td>
<td>Vegetation cover</td>
<td>Vegetation cover will decline as water availability for vegetation growth decreases.</td>
</tr>
</tbody>
</table>
Deforestation trends would increase mangrove degradation reducing people’s capacity to depend on forestry sources and fisheries as a viable livelihood option by 2050.

- As mangroves are cleared, the numerous basic ecosystems services they provide that support climate resilience – erosion control, defences against coastal storms, fisheries habitats – may also be lost.

- Fisheries will be very seriously impacted by loss of mangroves. One study estimates that for every hectare of mangrove cleared, there would be a decline in fish catch of 888 kilogrammes.

- Production may move away from capture fisheries towards aquaculture. This would have adaptation benefits, giving producers more control over their production in less exposed locations. However, evidence shows that aquaculture is a driver of deforestation (both mangrove and terrestrial forests).
Mangrove forests have been cleared and substantially degraded since the late 1970s, losing half of their total area between 1970 and 2015. The extent of deforestation is projected to rise further by 2050, which is expected to be the largest single cause of biodiversity loss. Mangrove forests provide essential services that support climate change impacts. As mangroves are cleared, the natural damage to ecosystem services they provide that support resilience—such as coastal defenses, against coastal storms, hurricanes, floods, the—will also be lost.

Climate Change Projections

Data Source:
MIMU, FAO, WWF, UN HABITAT

Disclaimer:
The designations employed and the presentation of material on this map do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
The capacity of the population to access transportation services will be highly reduced in coastal and central areas by 2050:

- Some of the coastal areas could become permanently inundated while tides will severely affect others, rendering them partially inundated. This will also mean that what road infrastructure exists in these areas will be either completely or partially unusable. This also means that the existing network of boat piers may become increasingly unusable or unsuited.

- Individual boats are likely to be more dangerous and less able to pass the larger channels because of high waves that will accompany storms and inundation.

- Because the coastal areas rely heavily on boat transport to Labutta town and elsewhere, damage to this infrastructure would be critical, because it would result in isolation, with serious impacts on other areas. If inundation due to floods continues to become more severe, it will also affect road transport from Labutta town.

Access to transportation services mainly relies on the interaction of two eco-system services (type of vegetation and soil) that are already highly impacted by climate change:
Disclaimer:
The designations employed and the presentation of material on this map do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.

Climate Change Projections

Vegetation cover

The predominant land use in Labutta Township, based on Landsat Imagery using Google Earth Engine, is agriculture, covering 45% of the land, followed by mangroves (28%) located in northern areas, forests (12%) located in northern areas, scrubland (15%) and areas mainly located in the southern area.

Earth Engine, is agriculture,

Distribution of the important land resources for agriculture

Vegetation cover

The predominant land use in Labutta Township, based on Landsat Imagery using Google Earth Engine, is agriculture, covering 45% of the land, followed by mangroves (28%) located in northern areas, forests (12%) located in northern areas, scrubland (15%) and areas mainly located in the southern area.

Vegetation cover

The predominant land use in Labutta Township, based on Landsat Imagery using Google Earth Engine, is agriculture, covering 45% of the land, followed by mangroves (28%) located in northern areas, forests (12%) located in northern areas, scrubland (15%) and areas mainly located in the southern area.

2016 | Capacity of the population to have access to transport services

Distribution of the population having access to transport services in 2016, as the result of changes in temperature and rainfall.

2050 | Capacity of the population to have access to transport services

Distribution of the population having access to transport services in 2050, as the result of changes in temperature and rainfall.

2016 | Capacity of the population to have access to transport services

Distribution of the population having access to transport services in 2016, as the result of changes in temperature and rainfall.

2050 | Capacity of the population to have access to transport services

Distribution of the population having access to transport services in 2050, as the result of changes in temperature and rainfall.

Soil types

Soil classification concerns the vertical and lateral range of properties (chemical, physical and biological) into units that can be geo-referenced and mapped. The classification has been applied during a Land Use Assessment and inventoried as one of the important land resources for agriculture.

2016 | Capacity of the population to have access to transport services

Distribution of the population having access to transport services in 2016, as the result of changes in temperature and rainfall.

2050 | Capacity of the population to have access to transport services

Distribution of the population having access to transport services in 2050, as the result of changes in temperature and rainfall.

2016 | Capacity of the population to have access to transport services

Distribution of the population having access to transport services in 2016, as the result of changes in temperature and rainfall.

2050 | Capacity of the population to have access to transport services

Distribution of the population having access to transport services in 2050, as the result of changes in temperature and rainfall.

Soil types

Soil classification concerns the vertical and lateral range of properties (chemical, physical and biological) into units that can be geo-referenced and mapped. The classification has been applied during a Land Use Assessment and inventoried as one of the important land resources for agriculture.

2016 | Capacity of the population to have access to transport services

Distribution of the population having access to transport services in 2016, as the result of changes in temperature and rainfall.

2050 | Capacity of the population to have access to transport services

Distribution of the population having access to transport services in 2050, as the result of changes in temperature and rainfall.

2016 | Capacity of the population to have access to transport services

Distribution of the population having access to transport services in 2016, as the result of changes in temperature and rainfall.

2050 | Capacity of the population to have access to transport services

Distribution of the population having access to transport services in 2050, as the result of changes in temperature and rainfall.

Soil types

Soil classification concerns the vertical and lateral range of properties (chemical, physical and biological) into units that can be geo-referenced and mapped. The classification has been applied during a Land Use Assessment and inventoried as one of the important land resources for agriculture.
This assessment arrives at three broad scenarios of the future. These scenarios can help local and national government to plan for actions that will increase Labutta’s resilience to the impacts of climate change. Planning actions based on scenarios is in-line with the IPCC pathways approach and is a common way that governments and industries use to plan for the future.
In scenario A, authorities and communities do not recognize the urgent need to address different aspects of vulnerability and therefore changes in climate have an exponential effect on the three systems analysed in this report: socio-economic, infrastructure, ecological. Under this scenario, the spatial structure of Labutta, challenged by sea-level rise and salinization, and heightened risks of rapid on-set disasters, causing a loss of productivity, will undergo radical changes.

SCENARIO B
Resilience is built to maintain current living standards

Under scenario B, recognizing the future challenges, the township, district, and national authorities, together with development partners, work to build a minimum standard of resilience that ensures at least maintenance of current living standards and reduce the vulnerability of Labutta’s people. This scenario is the minimum required to prevent increased vulnerability, and to enable continued development.

SCENARIO C
Resilient, sustainable economic development for Labutta

Under scenario C, Labutta in 2050 sustains and continues people’s socio-economic development through a diversified economy, improved infrastructure and healthy ecosystems that is less dependent on paddy cultivation and capture fisheries.
If business is conducted as usual, meaning that adaptation measures are not implemented, unsustainable use of environmental resources continues and resilience is not built across the systems, Labutta is unlikely to be able to support current and expected population growth at the same living standard as in 2016. Labutta will experience lower incomes because of salinity, inundation, inundation of land, storm surges affecting coastal villages, strong winds affecting the whole township, loss of habitat for fishery, decrease of industrial and agricultural capacities, internal migration from south to north, a continued lack of skills and employability, continued labour intensive, low remuneration employment and outward migration.

Infrastructure functionality will be increasingly compromised as it is exposed to cyclones, strong winds and floods. This will translate into loss of assets such as houses, schools, public buildings and will cause increasing loss of life. Transport will become more difficult as the limited road infrastructure will be recurrently inundated, while bridges could be destroyed and the main waterways will be increasingly impassable as higher waves impact them.

Deforestation will expose the coastal areas to extreme weather, while declining mangrove coverage will cause a continued depletion of fish stocks. It will also affect soil regulation and quality, while also reducing the availability of building materials and cooking fuels. Soil quality issues will be exacerbated by salinity and a shorter but more intense monsoon season, which will have an impact on agricultural production. Water availability will continue to decline as a longer dry season will mean greater time for water to evaporate, while being more difficult to store.

A BUSINESS AS USUAL SCENARIO

Labutta in 2050 maintains current living standards by undertaking some adaptation measures, however, it broadly continues its present development trajectory.

Deforestation trends would need to halt to maintain current living standards, especially in mangroves, which are being cut at a highly unsustainable rate. To do this, alternative – ideally renewable – energy sources would be required.

To adapt in agriculture, a variety of measures would be required: salt resistant varieties and improved cropping techniques would be needed, with appropriate safety net features in case of failures. Meanwhile, provisions and plans should be made to enable farmers in the inundated area to move to other areas that are not saline; a process that will be complicated and take a considerable amount of time.

The current network of water ponds would have to be enhanced, and systems put in place to prevent free-rider problems. Transport infrastructure would also require improvements; the network of boats and piers would have to be strengthened to maintain present functionality in the face of stronger winds, storms, and possible inundation. Meanwhile, improvements in road transport and power infrastructure would also contribute to maintaining current levels of development.

RESILIENCE IS BUILT TO MAINTAIN CURRENT LIVING STANDARDS

Labutta in 2050 maintains current living standards by undertaking some adaptation measures, however, it broadly continues its present development trajectory.

Deforestation trends would need to halt to maintain current living standards, especially in mangroves, which are being cut at a highly unsustainable rate. To do this, alternative – ideally renewable – energy sources would be required.

To adapt in agriculture, a variety of measures would be required: salt resistant varieties and improved cropping techniques would be needed, with appropriate safety net features in case of failures. Meanwhile, provisions and plans should be made to enable farmers in the inundated area to move to other areas that are not saline; a process that will be complicated and take a considerable amount of time.

The current network of water ponds would have to be enhanced, and systems put in place to prevent free-rider problems. Transport infrastructure would also require improvements; the network of boats and piers would have to be strengthened to maintain present functionality in the face of stronger winds, storms, and possible inundation. Meanwhile, improvements in road transport and power infrastructure would also contribute to maintaining current levels of development.
Under a business-as-usual scenario, Labutta’s level of socio-economic and infrastructure development may decrease across the township. As 75% of the population, mainly located in coastal and central areas, would be living in villages where only basic health and education services are provided. Road and water infrastructure works and projects would beeither completely or partially unavailable or delayed resulting in isolation of coastal and central areas. Buffer areas, especially Labutta Town, would be severely affected by the loss of agricultural production in southern areas and specialized markets would not be available to the local population.

In 2050, at regional level, Myaungmya would likely provide main socio-economic functions to the whole township, while Pathein may provide the highest level of education and health facilities and represents the main local and regional market for the agricultural products and provisioning needs of the local population.
Labutta in 2050 sustains and continues people’s socio-economic development through a diversified economy, improved infrastructure and healthy ecosystems that is less dependent on paddy cultivation and capture fisheries.

Agriculture needs to be made resilient to the new climatic features through a combination of resistant crop varieties, better irrigation, and improved storage and distribution of water. To generate wealth from agriculture, some value addition, such as milling and processing, should take place in the township. To enable this, investment is required in energy and transport infrastructure that will both protect people, add greater connectivity, and allow for energy-intensive industries. Investment in renewables would also be an important consideration, in this case.

Investment in education and skills, coupled with infrastructure and agro-industrial development will enable young people to stay in the township and find more remunerative employment. It will also create a virtuous cycle, because people will be less likely to migrate, and less likely to work in highly climate-sensitive sectors such as capture fisheries and paddy cultivation.

Deforestation trends would have to completely reverse, with reforestation of both inland forests and mangroves essential for the healthy functioning of ecosystems in the township. This required to ensure that coastal settlements continue to be inhabitable, as well as preventing the salt line from moving further north.

Scenario C

RESILIENCE IS BUILT THAT ENABLES ECONOMIC AND SOCIAL DEVELOPMENT DESPITE CHANGES IN CLIMATE BY 2050, TAKING INTO ACCOUNT THE DIFFERENTIATED VULNERABILITIES OF BOTH MEN AND WOMEN
Building resilience to climate change in Labutta township is a great and urgent challenge, on which the lives and welfare of thousands of people depend. The devastating and long-lasting effects of Cyclone Nargis in 2008 are a tragic reminder of the sensitivity of Labutta area to severe, sudden, natural events. However, this assessment calls the attention of authorities and development partners to the fact that the effects of changes in climate on productive, social, ecological, and infrastructural systems of the township will greatly affect liveability and viability of Labutta over the next years, as well as increase the risk of further disasters.

KEY FINDINGS

1. In addition to the need to reduce disaster risks from severe weather events, which will increase in intensity, decision-makers in Labutta Township urgently need to plan for increased coastal flooding, warmer temperatures, more frequent extreme heat days, greater amounts of monsoon rainfall over a shorter monsoon season, and unknown rainfall changes during other seasons;

2. Severe and wide-ranging underlying vulnerabilities exacerbate these climate-related threats, and are deeply interrelated with them. This consists of:
 - a fragile and fast-degrading ecosystem that communities are heavily dependent on. Mangrove forests are particularly critical for maintaining ecosystem services but could be lost entirely within the next ten years without measures to prevent their loss;
 - an economic and productive structure largely based on climate-sensitive agriculture and fisheries with insufficient technical skills to diversify production and employment. Agriculture is affected by salinity, higher average temperatures, heat waves, floods, inundation, and strong rains. As most people do not have alternative livelihoods or technical or vocational skills, migration is high, especially among young men, who are more than twice as likely to migrate than women. Climate change projections indicate that these impacts will worsen by 2050; incomes will at best stagnate and may well decline, and in this case increased migration is highly likely;
 - and infrastructure (transport, housing, schools, health-posts, roads, bridges, cyclone shelters) that is not adapted to the increased risks deriving from climate change. Housing and basic service infrastructure primarily uses non-resistant local materials; in some areas, up to 97 per cent of houses use local materials, while the network of disaster resilient life-line buildings, such as cyclone shelters, only cater for 10 per cent of the total population. Schools, health facilities and other public buildings are also not adapted to withstand severe climatic events.

3. These vulnerabilities must be tackled as a whole, to generate co-benefits and enable adaptation. However, this requires effective strategic planning, resource coordination, and time. This vulnerability assessment, and the planning work that follows it, represents a step towards achieving resilience and sustainable development, but the efforts should be sustained over a long period of time and by a number of actors, in particular local and national government. As of now, the study finds that if no actions are taken, Scenario A, a business as usual, is likely to unfold, which will make life and livelihoods very challenging in the township, especially for those living close to the coast.

Based on these findings, the study concludes that urgent adaptation planning is required to avoid Scenario A, and strive to achieve at the very least Scenario B, while aspiring to create the conditions for Scenario C. An adaptation plan offers the best starting point for effective governance instrument to organize efforts and mobilize resources.
POLICY RECOMMENDATIONS

Policy recommendations, derived from the findings of the assessment are as follows:

1. It is crucial that healthy ecosystems are maintained and enhanced in Labutta. Ecosystems provide a variety of services to communities, without which the vulnerabilities of households will increase greatly from both rapid and slow onset disasters from changes in climate. Actions must focus, among others, on:
 a. Environmental conservation and restoration. In particular, mangrove and other multi-benefit services must be protected, restored and enhanced and environmental degradation stopped urgently, otherwise communities will not be able to adapt the adverse effects of climate change;
 b. Protection and enhancement of biodiversity habitat, especially for fish, while providing protection from unsustainable techniques;
 c. Innovation in agricultural production with salt and temperature resistant crops, to protect and enhance productivity in a context of climate change;
 d. Reducing the over-exploitation of natural resources, especially mangrove, through the widespread use of alternative energy sources, such as solar panels, efficient cook-stoves and other technology, and strengthening the capacity to manage water resources responsibility and durably, as increased temperatures and erratic rainfall will reduce fresh-water availability.

2. It is essential that productive capacities in agriculture and fishery are protected from the effects of the changing climate, such as crop failure from increased temperatures, salinization as these sectors will continue to provide employment and occupation to most of the economically active population. However, given the potential extent of climate change impacts, including inundation, massive crop failure, potential conflict over land, it is also extremely important that productive means are diversified, to reduce dependency on these climate-sensitive sectors. Thus, actions should be taken to:
 a. Enhance and diversify skills of people, both men and women, and especially younger people, to increase employment in different sectors in Labutta and elsewhere, as some migration can’t be avoided. Vocational training is also important as levels of technical qualifications are extremely low at present;
 b. Strengthen the socio-economic productive system by promoting cooperatives of farmers and fishermen so to increase their capacity to withstand shocks from rapid and slow on-set disasters, and to recover more quickly from them;
 c. Increase opportunities for new industries or enterprises and promote investment, including through loans and other incentive schemes. This is difficult to achieve, without increased overall investment and focus on Labutta. It involves a large involvement of national, regional and district authorities, as well as development partners, and requires careful planning to be feasible.

3. It is crucial that all infrastructure is adapted to the heightened risks of disasters from cyclones, floods and inundation, and water shortages. It is also important that transportation systems are improved to sustain development across the township. This implies, on the one hand, preventing future impacts of climate change on essential infrastructure such as roads, bridges, and settlements in general through climate-sensitive spatial planning. On the other hand, it requires retrofitting existing basic infrastructure, such as schools and health-posts, and ensuring that housing integrates basic disaster-resistant measures. More specifically, it is recommended that:
 a. Spatial planning in any new infrastructure, settlement expansion or any other infrastructure and development is climate-sensitive. This means that planning should consider current and future risks related to floods, cyclones and fresh-water shortages;
 b. Housing and basic infrastructure, including schools, health-posts is progressively retrofitted and reinforced, and new structures are built using disaster-resistant techniques;
 c. Housing safety also includes improved sanitation, and, crucially, the capacity to harvest water safely with improved techniques;
 d. A network of life-line buildings is established, which includes not only dedicated cyclone shelters built from conventional materials, but also a network of resilient schools and health-posts that can greatly increase the resilience of communities to disasters;
 e. Transport and connectivity is planned and protected from heightened risks related to climate change, such as storm-surge and waves, floods and inundation;
 f. Community capacities are improved to collect and manage water, in the context of increased water scarcity resulting from a shorter monsoon; variable and erratic rainfall; increased evaporation; and salinization of ground-water;
 g. Early-warning systems, in connection with disaster-sensitive physical and town planning are greatly enhanced and their coverage increased and adapted to new or heightened risks, such as floods and inundation from sea-level rise.
4. Planning for resilience building will require a strengthened local governance, which will need stronger planning capacities from local to national level and vice-versa.

a. It will be also absolutely crucial that resilience-building actions are designed at township scale. Most of the adaptation measures will be ineffective if planned at village level, as they require spatial and economic scale.

b. This will include budgeting. The results of this report should be integrated in township planning.

c. Awareness of climate change impacts and their implications is highly strategic, cost-effective and important, and it should therefore be a focus of any intervention in Labutta.

Based on the broad coverage of community consultations undertaken in this study, and ownership by the township authorities, the assessment also included participatory planning for long-term adaptation and resilience-building. This planning process identified priority outcomes, outputs and specific actions to prevent Scenario A from materializing, and change Labutta’s development trajectory towards Scenarios B and, ideally, Scenario C.

Communities and township authorities agreed that, in order to achieve Scenario C, the following main outcomes should be obtained:

1. Healthy ecosystem is maintained and enhanced, to continue protecting and providing for people;

2. Diversified and resilient economy is promoted, to enhance the economic conditions of people in the township;

3. Resilient infrastructure and connectivity is achieved, which protects people and enables development.

These outcomes, defined during the consultations, are not simply aspirational. They are backed by a series of possible expected results and actions to undertake with different degree of investment and partnerships.

These priorities will need to be implemented by the communities, and the townships, district and national authorities. The outcomes of the plan will also help to communicate priorities to development partners and the private sector.

The summary of the actions prioritized are presented on the following pages..
OUTCOME 1: ECO-SYSTEM

OUTCOME EXPECTED

<table>
<thead>
<tr>
<th>ACTIVITIES</th>
<th>TYPE</th>
<th>COST</th>
<th>COMMUNITY</th>
<th>IMPACT</th>
<th>ADAPTIVE</th>
<th>BENEFIT</th>
<th>STRATEGIC</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protecting existing and restoring mangrove/forestry areas by creating mangrove-forestry reserves</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>Protecting existing and restoring mangrove/forestry areas by creating mangrove-forestry reserves</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>Balancing and regulating energy from forest systems to maintain and improved soil and water quality</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>Balancing and regulating energy from forest systems to maintain and improved soil and water quality</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>Implementing integrated management of managed forest areas (e.g., enhanced forest productivity, decreased deforestation)</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>Implementing integrated management of managed forest areas (e.g., enhanced forest productivity, decreased deforestation)</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>100</td>
</tr>
</tbody>
</table>

OUTCOME 2: SOCIO-ECONOMIC

OUTCOME EXPECTED

<table>
<thead>
<tr>
<th>ACTIVITIES</th>
<th>TYPE</th>
<th>COST</th>
<th>COMMUNITY</th>
<th>IMPACT</th>
<th>ADAPTIVE</th>
<th>BENEFIT</th>
<th>STRATEGIC</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate information for farmers</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>Knowledge sharing</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>Training on mechanized farming</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>Traditional irrigation systems</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>More access to renewable energy</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>Training on irrigation systems</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>Training on irrigation systems</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACTIVITIES</th>
<th>TYPE</th>
<th>COST</th>
<th>COMMUNITY</th>
<th>IMPACT</th>
<th>ADAPTIVE</th>
<th>BENEFIT</th>
<th>STRATEGIC</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improved access to job guarantees</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>Improved access to job guarantees</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>Training in agriculture</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>Training in agriculture</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>100</td>
</tr>
</tbody>
</table>
OUTCOME 3: INFRASTRUCTURE AND CONNECTIVITY

<table>
<thead>
<tr>
<th>OUTCOME</th>
<th>EXPECTED RESULT</th>
<th>TYPE</th>
<th>COST</th>
<th>COMMUNITY ACCEPTANCE</th>
<th>ADAPTATION/EFFECTIVENESS</th>
<th>BENEFIT ANYWAY/NO REGRET</th>
<th>STRATEGIC VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ER1</td>
<td>Building cyclone shelters that can also be used as schools/community centres (local materials, double-use etc.)</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Flood and erosion control plans</td>
<td>23</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Evacuation routes</td>
<td>23</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Early warning system</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Flood maps at village/urban ward level</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Improve radio access and broadcast</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Disaster drill in schools</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Improve water capture and storage at community level</td>
<td>34</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Strategic water networking</td>
<td>34</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Improve construction techniques for resilient architecture</td>
<td>35</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Improve management of infrastructure</td>
<td>25</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Improve storage for food, crops and animals</td>
<td>45</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Network of water harvesting at household level</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Local/conventional material resistant housing</td>
<td>25</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Large energy infrastructure, E.g. PEPPET energy generation etc.</td>
<td>13</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>River basin management (National relevance)</td>
<td>12</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ER2</td>
<td>Network of transport and communication is enhanced</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Concrete or wooden jetty to maintain access</td>
<td>24</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Road network adapted to recurrent hazards</td>
<td>13</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Roads and bridges to access in case of hazards/sea-level rise</td>
<td>13</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Sustainable urban drainage in Labutta town</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>Labutta – and other townships in Myanmar – will have to officially adopt the local adaptation and resilience plan resulting from this analysis and use it consistently to programme and budget interventions and interact with donors and development partners.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>While the impacts and future threats of climate change outlined in this report are severe and solutions to these are long-term in nature and complex to implement, this report should offer hope and encouragement that solutions exist and, with the right support and sufficient resources, can be implemented to ensure that Labutta Township can develop along a resilient and sustainable pathway.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>It is the hope of UN-Habitat, UN Environment, WWF, and the CCSR that the report will be of use to both national and sub-national government officials in other parts of Myanmar, and of inspiration to other countries in the region to take action.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>